

Susi R Puspitadewi

by Radja Erland Hamzah

Submission date: 07-Dec-2023 08:50AM (UTC+0700)

Submission ID: 2191980212

File name: 29-2045-PB.pdf (252.08K)

Word count: 5007

Character count: 26112

1

Relationship of Age, Body Mass Index, Bone Density, and Menopause Duration with Alveolar Bone Resorption in Postmenopausal Women

Susi R. Puspitadewi¹, Pitu Wulandari², Lindawati S. Kusdhany³, Sri Lelyati C. Masulili⁴, Hanna Bachtiar Iskandar⁵, Elza Ibrahim Auerkari⁶

¹Post-graduate program, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia. 0000-0001-5353-2869

²Post-graduate program, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia. 0000-0001-8337-2691

³Department of Prosthodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia. 0000-0003-1877-8737

⁴Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia. 0000-0003-3641-5358

⁵Department of Dento-Maxillofacial Radiology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia. 0000-0002-8122-5759

⁶Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia. 0000-0002-5680-7925

38

Author to whom correspondence should be addressed: Lindawati S. Kusdhany, Department of Prosthodontics, Faculty of Dentistry, Universitas Indonesia, Jalan Salemba Raya No.4, Jakarta 10430, Indonesia. Phone: +62 81284883763. E-mail: lindaskusdhany@gmail.com.

Academic Editors: Alessandro Leite Cavalcanti and Wilton Wilney Nascimento Padilha

Received: 28 January 2019 / Accepted: 04 May 2019 / Published: 15 May 2019

Abstract

4

Objective: To analyze the relationship between age, body mass index (BMI), bone mineral density (BMD), and alveolar bone resorption with menopause duration in postmenopausal women. **Material and Methods:** A cross-sectional study was developed involving 59 subjects, aged 45 to 80 years and categorized the duration of menopause as ≤ 5 years and > 5 years. Body mass index measurement and menopause duration were collected. Bone loss seen on radiography was measured by drawing a vertical line from the cementoenamel in the distal part of the 36 teeth and the mesial portion of 46 teeth to the base of the bone marked by the lamina dura intact. Categorical determinations of age, BMI, BMD, and alveolar bone resorption were based on receiver operating characteristic (ROC) curves. Were used Pearson correlation and Spearman correlation tests with the significance level set at 5%. **Results:** The majority of subjects (54.2%) with menopause duration > 5 years were aged > 54.5 years, most had BMI $> 24.2 \text{ kg/m}^2$ (39%), had bone resorption $> 2.95 \text{ mm}$ (52.7%), and had bone density ≤ 73.89 (49.2%). Pearson and Spearman correlation tests showed no significant correlation between age, BMI, bone density, and alveolar bone resorption ($p > 0.05$). **Conclusion:** The longer the duration of menopause showed a tendency for lower bone density and higher age, BMI, and bone resorption.

Keywords: Menopause; Bone Density; Body Weights and Measures.

61

Association of Support to Oral Health Research - APESB

Introduction

4

Menopause is a phase of a woman's natural life that signifies the end of the menstrual cycle.⁴⁶ It is diagnosed after a woman has not had a menstrual period for 12 months. The average natural menopause occurs at age 51.4 years in developed countries such as the United States and the U.K. but generally occurs between the ages of 40 and 58 years [1].

A woman's reproductive capacity stops at the time of menopause. The ovaries no longer have follicles and their function, as a steroidogenic endocrine organ does not work anymore. Many women experience symptoms and complaints due to these hormonal changes. Although it does not cause death, menopause can decrease quality of life and lead to degenerative diseases especially bone loss or osteoporosis [2].

52

Osteoporosis is characterized by bone mineral density (BMD), thus increasing bone fragility and fracture risk. Postmenopausal osteoporosis results from the estradiol hormone in the follicle. Estradiol is a type of estrogen that assists osteoblasts, suppresses cytokines, and inhibits osteoclast activity. Estradiol decreases during menopause; therefore, its work is replaced by another type of estrogen that can be produced by adipose tissue. But the mechanism of action of estrone is not like estradiol (ratio of estradiol:estrone = 10:5). The longer the duration of menopause, the more estradiol function decreases, which causes osteoclasts to become active in bone resorption [3].

Estrogen is not only produced by the ovaries but also in the adrenal glands and fat tissues (adipose tissue). Fatty tissue can convert androgen hormones into estrogen. The amount of fat tissue a woman has correlates with the amount of estrogen produced [4,5]. Body mass index (BMI) is an inexpensive and simple method for assessing an individual's nutritional status but it does not directly measure body fat. Measurements and assessments using BMI are associated with deficiency and excess nutritional status [6].

43

BMI is a mathematical formula expressed as weight (in kilograms) divided by the square of height (in meters).⁴⁸ Based on the range value, BMI is divided into 3 categories: underweight (BMI ≤ 18.4), normal (BMI = 18.5-25), and overweight (BMI ≥ 25.1). This formula can only be applied to an individual with normal spinal structures, hence it is not appropriate to use in athletes or bodybuilders or pregnant or breastfeeding women [7].

It has been suggested that long menopause duration and BMI are directly related to BMD [8]. Low BMI is associated with low peak bone mass and high loss of bone mass [9]. However, BMI is not a good predictor of BMD [10]. Other studies have also shown that the effect of weight on bone mass is greater on the body parts supporting the weight, e.g., in the femur or tibia bone. It was reported that decreased fat mass resulted in decreased steroid hormone levels, which resulted in decreased BMD. Many of these opinions indicate that the relationship of BMI to bone density and menopause duration is still much debated [11].

Bone is a living tissue continuously undergoing formation and resorption due to mechanical response and hormonal changes. The process of bone formation is very active in young adults aged approximately 20 years and far beyond the process of bone resorption. Both processes are similarly active between the ages of 20 and 40 years, while the resorption process is more active than the bone

formation process at age >40 years; accordingly, bone mass becomes smaller. After peak bone mass between the ages of 25 and 35 years, bones shrink from 0.3% to 0.5% per year [12,13].

Bone mass is lower in women, and loss of bone mass occurs earlier in women than in men, thus women aged >45 years have an increased risk for fractures. Loss of bone mass due to estrogen deficiency occurs first in spongia while shrinkage does not occur in trabecular bone. Deterioration of bone mass is caused by an imbalance between bone resorption and bone formation [14].

Previous research suggests a significant relationship between cortical bone density of gonion and skeletal bone density in postmenopausal women [14]. This is supported by a previous study, in which it was verified that there is a correlation between mandibular bone density and bone density of the lumbar spine and femur in postmenopausal women [15]. Research has shown that bone resorption in other parts of the body is similar to that in alveolar bone, but the relationship between menopause duration and bone resorption remains unclear.

Postmenopausal women with high BMD find it easier to maintain teeth compared to women with low bone density or osteoporosis [16]. However, some studies suggest that attachment loss is associated with tooth loss but not with bone density; however, this research is still questionable, based on the findings of previous research, and sparks debate. Several studies have shown a possible link between jawbone density and density across the bone [17,18].

The relationship between duration of menopause, dry mouth, BMI, and age were used as parameters for identifying risk factors for postmenopausal osteoporosis [19]. Mandibular periapical radiographs are used to evaluate the level of alveolar resorption. It is very important for the dentist to know the amount of bone resorption in performing denture treatment so that denture treatment can last a long time in the mouth when used to function [20].

The purpose of this study was to analyze the relationship between age, BMI, BMD, and duration of menopause to alveolar bone resorption in postmenopausal women.

Material and Methods

Study Design

This cross-sectional study included 59 postmenopausal women aged 45-80 years. Patients were excluded if they had a history of bone disease, metabolic or endocrine disorders such as hyperthyroidism and hyperparathyroidism, diabetes mellitus, kidney and liver diseases, or medications known to affect bone metabolism (e.g., corticosteroids, anticonvulsants, and sodium heparin).

Subjects were determined by consecutive sampling technique. Those meeting the criteria underwent oral examination and were interviewed using a validated questionnaire, which contained demographic information including past and present medical history. BMI measurement was the results of the calculation of the ratio of body weight and height through the formula body weight / height² (kg/m²), and menopause duration was estimated using a questionnaire. In this study, a woman was considered postmenopausal if she had not menstruated for 1 year, and duration of menopause was assessed via subject interviews.

Bone loss seen on radiography was measured by drawing a vertical line from the cementoenamel (CEJ) in the distal part of the 36 teeth and the mesial portion of 46 teeth to the base of the bone marked by the lamina dura intact, and the distance calculated (in mm) relative to the alveolar bone peak using the caliper. BMD evaluation and density on periapical radiography, including region of interest (ROI) of the mandibular cortex, was assessed using 5 \times magnification. ROI is a square made of mesial and distal interdental from 36 and 46 teeth about 1 mm from the alveolar peak and then forms a square of \pm 3 mm². Measurements were made based on the results of the modified Taguchi method, where in Grade 1, trabeculation is not visible; Grade 2, trabeculated bone looks thin and only amounts to a small change; Grade 3, trabeculation looks like normal bone; Grade 4, thick trabeculation almost blankets the bone marrow; and Grade 5, trabeculation solid, bone trabeculae dense [21].

Data Analysis

56

Descriptive statistics were calculated and tested for normality using the Shapiro-Wilk test for distribution. Categorical determinations of age, BMI, BMD, and alveolar bone resorption were based on receiver operating characteristic (ROC) curves. The subjects' ages, BMI, BMD, and alveolar bone resorption were calculated using Pearson correlation and Spearman correlation tests. A p-value <0.05 was considered significant.

42

Ethical Aspects

Patients gave their informed consent prior to participating in the study, and the research was approved by the ethics committee of the Faculty of Dentistry, Universitas Indonesia.

2

Results

Table 1 shows that subjects with duration of menopause >5 years had a higher mean age (61.28 ± 7.21 years) compared with subjects who had duration ≤ 5 years (54.37 ± 4.17 years). Mean values of BMI (26.83 ± 6.61) and bone resorption (4.38 ± 1.61) in subjects with duration >5 years were similar to those of BMI (26.88 ± 4.78) and bone resorption (4.21 ± 1.45) in subjects with duration ≤ 5 years. Mean value of BMD was higher in subjects with duration ≤ 5 years (73.19 ± 14.61) versus >5 years (69.71 ± 10.45).

62

Table 1. Distribution of participants according to BMI, BMD and alveolar bone resorption based on menopause duration.

Menopausal Duration	Mean (SD)	Minimum – Maximum
Age		
≤ 5 Years	54.37 (4.17)	48 years – 65 years
> 5 Years	61.28 (7.21)	48 years – 77 years
BMI (kg/mm ²)		
≤ 5 Years	26.88 (4.78)	19.64 – 37.19
> 5 Years	26.83 (6.61)	17.55 – 43.88

BMD		
≤ 5 Years	73.19 (14.61)	45.62 – 93.34
> 5 Years	69.71 (10.45)	44.23 – 106.27
Alveolar Bone Resorption (mm)		
≤ 5 Years	4.21 (1.45)	2.05 – 6.90
> 5 Years	4.38 (1.61)	1.29 – 8.20

Age determination used a 54.50 cut-point value to divide the subjects into ages <54.50 years and >54.50 years (sensitivity 52.6%, specificity 80%, area under the ROC curve [AUC] 0.21). BMI determination used a cut-point of 24.25 to divide the subjects into BMI <24.25 kg/m² and >24.25 kg/m² (sensitivity 73.7%, specificity 57.5%, AUC 0.53). BMD determination used a cut-point of 73.89 to divide the subjects with BMD <73.89 and >73.89 (sensitivity 57.9%, specificity 27.5%, AUC 0.60), and determination of alveolar bone resorption used a cut-point of 2.95 to divide the subjects into bone resorption <2.95 mm and >2.95 mm (sensitivity 78.9%, specificity 77.5%, AUC 0.46) (Table 2).

Table 2 shows that the majority of subjects (54.20%) with duration of menopause >5 years were aged >54.50 years, most (39.00%) had BMI >24.25 kg/m², and the majority (52.50%) had bone resorption >2.95 mm, but most subjects (49.20%) with duration of menopause >5 years had BMD ≤73.89.

Table 2. Grading of age, BMI, BMD, and bone resorption based on duration of menopause.

Variables	Categories	≤5 Years Menopause		>5 Years Menopause	
		N	%	N	%
Age (Years)	≤ 54.50*	9	15.3	8	13.6
	> 54.50*	10	16.9	32	54.2
BMI (kg/m ²)	≤ 24.25*	5	8.5	17	28.8
	> 24.25*	14	23.7	23	39.0
BMD	≤ 73.89*	8	13.6	29	49.2
	> 73.89*	11	18.6	11	18.5
Alveolar Bone Resorption (mm)	≤ 2.95*	4	6.8	9	15.3
	> 2.95*	15	25.4	31	52.5

*Cutoff value determinant based on ROC curve.

Data analysis using Pearson correlation test indicated that age ($r = 0.16$) and BMI ($r = 0.18$) were positively correlated with alveolar bone resorption, but BMD ($r = -0.32$) was negatively correlated. There was no significant correlation between alveolar bone resorption and age ($p = 0.49$), BMI ($p = 0.44$), or BMD ($p = 0.18$) in subjects with duration of menopause ≤5 years (Table 3).

Table 3. Correlation between age, BMI, BMD, and alveolar bone resorption in subjects with duration of menopause ≤5 years.

Variables	Bone Resorption (n = 19)	
	Correlation Coefficient	p-value
Age	0.16	0.49
BMI	0.18	0.44
BMD	-0.32	0.18

Pearson correlation test (significant $p < 0.05$)

49

Based on Pearson correlation test, there was no significant correlation between age and bone resorption ($p = 0.38$) in subjects with a duration of menopause >5 years. A Spearman correlation test revealed that BMI ($r = -0.12$) and BMD ($r = -0.01$) had no significant correlation with alveolar bone resorption in subjects with a duration of menopause >5 years (Table 4).

26

Table 4. Correlation between age, BMI, BMD, and alveolar bone resorption in subjects with duration of menopause >5 years.

Variables	Bone Resorption (n = 40)	
	Correlation Coefficient	p-value
Age	0.14	0.38 ^a
BMI	-0.12	0.45 ^b
BMD ⁴⁷	-0.01	0.92 ^b

^aPearson correlation test (significant $p < 0.05$); ^bSpearman correlation test (significant $p < 0.05$).

Discussion

After a tooth extraction, the alveolar bone is resorbed, leading to deformation and diminished alveolar bone size. Changes in alveolar bone shape not only on the surface of the alveolar bone in a vertical direction but also in a labiolingual/palatal direction from the initial position cause the alveolar bone to be low, rounded, or flat. Residual ridge resorption is influenced by different etiological factors in each individual [19,21].

In this study, the minimum age of subjects was 48 years with a maximum of 77 years. Increased bone loss occurred with age, especially in the elderly. This study divides the duration of menopause into 2 groups, i.e., ≤ 5 years and >5 years [12].

Duration of menopause is considered to be a more important factor for osteoporosis compared with age at menopause [3,4]. The majority of subjects in the group with menopause duration ≤ 5 years had an average age of 54.37 ± 4.17 years, which was in accord with previous study showing that the mean menopausal age was 51.3 years [4,18]. Based on the age-cutting value of the ROC curve, the majority of subjects were aged >54.50 years (Table 2), which agrees with the study of postmenopausal women and dividing the subject's ages to <50 and >50 years [4,22]. It has been demonstrated that menopause and age >50 years is a risk factor for the occurrence of osteopenia and osteoporosis [6,21]. According to previous studies, the age distribution of menopause ranges from 40 years to 54 years and generally clusters at the age of 45 to 55 years [23].

Subjects with duration of menopause ≤ 5 years and >5 years had a mean BMI $>25 \text{ kg/m}^2$, thus all subjects in the present study were considered overweight (Table 1). In agreement with the ROC curve, the cutoff value dividing the BMI of subjects weighing $\leq 24.5 \text{ kg/m}^2$ and $>24.5 \text{ kg/m}^2$, the majority of subjects have a BMI $>24.5 \text{ kg/m}^2$, which means that the majority of subjects were overweight (Table 2). Currently, the mechanism of obesity with bone density is still unclear. This is thought to be because adipose tissue releases many adipokines that play a role in bone remodeling through the effects of bone formation and resorption. Bone also acts as an endocrine organ and affects the balance of glucose and body weight through the action of bone derivative factors such as osteoclast and osteopontin [24].

Postmenopausal obesity is associated with genetic and environmental factors and is exacerbated by lifestyle patterns that play an important role in increasing BMI and waist size [7,25]. Weight gain slows down after age 60 years. Major changes in fat distribution and function occur throughout life. Fat tissue and connective tissue increase with aging, but muscle tissue and body water content decrease. In the elderly, the body will be shorter than normal and there will be adverse changes in bone, cartilage, and muscle [8,23].

The majority of subjects with a duration of menopause >5 years had a BMD ≤ 73.89 , while the majority of subjects with duration ≤ 5 years had BMD >73.89 , which could indicate that those with a longer duration of menopause have lower BMD (Table 2). Age is strongly associated with BMD in women compared with men, but bone size is related more to male than female BMD [26]. A previous study categorized the duration of menopause into 3 groups of 0-3 years, 4-7 years and >7 years, showing that women with menopause duration >7 years had the highest risk of osteoporosis due to bone loss associated with estrogen deficiency [21].

Subjects with duration of menopause ≤ 5 years had higher BMD compared to those with duration >5 years (Table 2), probably because the majority of subjects were overweight, where increased BMI or weight was significantly associated with bone acceleration in both women and men and low body weight was associated with low BMD [27].

The majority of subjects with duration of menopause >5 years had bone resorption >2.95 mm, thus it can be interpreted that longer menopause duration causes greater bone resorption (Table 2). Osteoporosis can occur in the mandible and may play an important role in residual ridge resorption [15]. Mandibles, like other body bones, have anatomic patterns that may serve as indicators in radiographs [28]. In this study, the mental foramen as seen on panoramic radiograph is recommended as a benchmark for measuring the magnitude of alveolar bone loss. Similar results were also used because the foramen position against the inferior mandibular border is relatively unchanged despite increasing age or occurrence of alveolar bone resorption above the foramen [25].

Some researchers claim that age affects bone resorption and bone density. Bone mass decreases in the elderly so that it will induce bone resorption [29], but the present study does not show a significant correlation between age and alveolar bone resorption ($p>0.05$) in subjects with duration of menopause ≤ 5 years and >5 years.

Previous research has shown that obese women have higher bone mass after menopause compared to women of the same age with normal weight, especially in the bones of the lumbar vertebrae and femoral columns. In contrast, obese postmenopausal women with high adipose mass can also have low BMD and vertebral fractures [28,30]. Some authors have claimed that loss of bone mass could occur in postmenopausal women at a bone weight of 0.5%-1% per year [4]. The present study shows no significant correlation between BMI and alveolar bone resorption ($p>0.05$) in subjects with duration of menopause ≤ 5 years and >5 years (Tables 3 and 4). Pregnancy and restrictions of women in their social environment cause more women to stay at home, and seldom participating in activities outside the home encourages overweight [31].

In this study, BMD negatively correlated with alveolar bone resorption, which means the higher the bone density, the lower the bone resorption. Moreover, this shows that BMD did not significantly correlate with alveolar bone resorption in subjects with ²² duration of menopause ≤ 5 years and >5 years (Tables 3 and 4), which is in line with previous study, which showed that there is no relationship between BMD and mandibular ¹ alveolar bone resorption in postmenopausal women [15,28] and this is supported by previous findings that showed that bone resorption does not increase as BMD decreases [18]. The possibility of bone density in postmenopausal women is due to many factors, not only because of estrogen levels from the ovaries but also because of estrogen from outside the ovaries such as from fat and the adrenal gland as well as from phytoestrogen foods such as tempeh and tofu, which can maintain and increase BMD after menopause [15].

Postmenopausal alveolar bone changes strongly correlate with BMD so that this relationship can be foundational in assisting the diagnosis of osteoporosis patients [32]. BMD changes are substantial at the end of perimenopause and continue to decline rapidly during ³² the early postmenopausal period [29]. This assessment of BMD is important because determining when bone mass reaches a critical level is valuable in helping clinicians ¹ determine the right time to check postmenopausal osteoporosis [11,29].

Conclusion ⁴

Age, BMI, and BMD are risk factors for osteoporosis in postmenopausal women. Although there was no relationship between these 3 risk factors and alveolar bone resorption in this study, there was a tendency for a longer duration of menopause to be associated with higher age, BMI, and bone resorption but lower BMD.

29

Authors' Contributions: All authors contributed individually and significantly to the development of this article. SRP and LSK wrote and reviewed the manuscript, contributed to the intellectual conceptualization of the study and the entire research project; and also performed the statistical analysis. PW wrote and reviewed the manuscript and performed measurements for the assessments and outcome assessment analysis. SLCM, HBI and EIA contributed to the intellectual conceptualization of the study and reviewed the manuscript.

Financial Support: This study was supported by a grant from the Directorate of Research, Universitas Indonesia (Hibah PITTA 2017).

Conflict of Interest: The authors declare no conflicts of interest.

24

References

- [1] Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, et al. European guidance for the diagnosis ⁷¹ management of osteoporosis in postmenopausal women. *Osteoporos Int* 2008; 19(4):399-28. [37](https://doi.org/10.1007/s00198-008-0560-z)
- [2] World Health Organization. Prevention and Management of Osteoporosis: Report of a WHO Scientific Group. (WHO technical rep ⁷⁴ series; 921). Geneva: WHO, 2003. ⁴⁵
- [3] Zhao LJ, Yong JL, Peng-Yuan L, James H, Robert RR, Hong WD. Relationship of obesity with osteoporosis. *J Clin Endocrinol Metab* 2007; 92(5):1640-6. <https://doi.org/10.1210/jc.2006-0572>

[23] Montazerifar F, Karajibani M, Alamian S, Sandoughi M, Zakeri Z, Dashipour AR. Age, weight and body mass index effect on bone mineral density in postmenopausal women. *Health Scope* 2014; 3(2):e14075. <https://doi.org/10.17795/jhealthscope-14075>

[24] Papakitsou EF, Margioris AN, Dretakis KE, Trovas G, Zoras U, Lyritis G, et al. Body mass index (BMI) and parameters of bone formation and resorption in postmenopausal women. *Maturitas* 2004; 47(3):185-93. [https://doi.org/10.1016/S0378-5122\(03\)00282-2](https://doi.org/10.1016/S0378-5122(03)00282-2)

[25] Kopiczko A, Gryko K. Body mass index, general fatness, lipid profile and bone mineral density in young women and men. *Anthropol Rev* 2017; 80(1):115-25. <https://doi.org/10.1515/anre-2017-0008>

[26] Silva HG, Mendonça LM, Conceição FL, Zahar SE, Farias ML. Influence of obesity on bone density in postmenopausal women. *Arq Bras Endocrinol Metab* 2007; 51(6):943-9. <https://doi.org/10.1590/S0004-27302007000600008>

[27] Migliaccio S, Emanuella A, Rachele F, Lorenzo MD, Andrea L. Is obesity in women protective against osteoporosis? *Diabetes Metab Syndr* 2011; 4:273-82. <https://doi.org/10.2147/DMSO.S11920>

[28] Akahoshi M, Soda M, Nakashima E. The effects of body mass index on age at menopause. *Int J Obes Relat Metab Syndr* 2002; 26(7):961-8. <https://doi.org/10.1038/sj.ijo.0802039>

[29] Robbins J, Schott AM, Azari R, Kronmal R. Body mass index is not a good predictor of bone density: Results from the CHS and EPIDOS. *J Clin Densitom* 2006; 9(3):329-34. <https://doi.org/10.1016/j.jcqd.2006.02.005>

[30] Sheng Z, Xu K, Ou Y, Dai R, Luo X, Liu S, et al. Relationship of body composition with prevalence of osteoporosis in central and south Chinese postmenopausal women. *Clin Endocrinol* 2011; 174(3):319-24. <https://doi.org/10.1111/j.1365-2265.2010.03941.x>

[31] Kim YS, Han JJ, Lee J, Choi HS, Kim JH, Lee T. The correlation between bone mineral density/trabecular bone score and body mass index, height, and weight. *Osteoporos Sarcopenia* 2017; 3(2):98-103. <https://doi.org/10.1016/j.afos.2017.02.001>

[32] Wu SF, Du XJ. Body mass index may positively correlate with bone mineral density of lumbar vertebra and oral neck in postmenopausal females. *Med Sci Monit* 2016; 22:145-51. <https://doi.org/10.12659/MSM.895512>

[33] Panchbhai AS. Quantitative estimation of vertical heights of maxillary and mandibular jawbones in elderly dentate and edentulous subjects. *Spec Care Dentist* 2013; 33(2):62-9. <https://doi.org/10.1111/j.1754-4505.2012.00301.x>

[34] Kusdhanay LS, Suryandari EI, Suryandari DA, Rahardjo TB, Hogervorst E, Talbot C. Estrogen receptor β gene polymorphisms and osteoporosis risk in postmenopausal women in need of dentures. *Int J Clin Prev Dent* 2011; 8(1):15-8.

[35] Ziaigham S, Sayhi M, Azimi N, Akbari M, Davari Dehkordi N, Bastami A. The relationship between menopausal symptoms, menopausal age and body mass index with depression in menopausal women of Ahvaz in 2012, Iran. *J Chronic Dis Care* 2015; 4(4):e30573. <https://doi.org/10.17795/jjcdc-30573>

[36] Mishra AK, Gajjar K, Patel K. Association between body mass index and bone mineral density among healthy men in India. *Int J Med Res Health Sci* 2016; 5(4):156-60.

[37] Ozoli B, Slaidina A, Laurina L, Soboleva U, Lejnieks A. The influence of bone mineral density and body mass index on resorption of edentulous jaws. *Stomatologija* 2011; 13(1):19-24.

[38] Akhlaque U, Ayaz SB, Akhtar N, Ahmad N. Association of bone mineral density and body mass index in a cohort of Pakistani men. Relation to gender, menopause and ethnicity. *Egyptian Rheumatol* 2017; 39(1):39-43. <https://doi.org/10.1016/j.ejr.2016.05.006>

[39] Taguchi A, Tanimoto K, Akagawa Y, Suei Y, Wada T, Rohlin M. Trabecular bone pattern of the mandible: Comparison of panoramic radiography with computed tomography. *Dentomaxillofac Radiol* 1997; 26(2):85-9. <https://doi.org/10.1038/sj.dmr.4600209>

[40] Najimutdinova DK, Nurmukhamedova LS, Alieva DA, Maksudova DS, Nosirova ZA. Study of the effects of the age at menopause and duration of menopause on bone mineral density in postmenopausal women in Uzbekistan. *Int J Med* 2016; 6(1):38-40. [https://doi.org/10.21103/Article6\(1\)_OA7](https://doi.org/10.21103/Article6(1)_OA7)

[41] Ceylan B, Ozerdogan N. Factors affecting age of onset of menopause and determination of quality of life in menopause. *Turk J Obstet Gynecol* 2015; 12(1):43-9. <https://doi.org/10.4274/tjod.79836>

[42] Mythili S, Athisha G. Association of body mass index with bone acceleration on impulse response in men and women of South Indian population. *Biomed Res* 2014; 25(4):471-5.

[43] Jonasson G, Rythén M. Alveolar bone loss in osteoporosis: A loaded and cellular affair? *Clin Cosmet Investig Dent* 2016; 8:95-103. <https://doi.org/10.2147/CCIDE.S92774>

[44] Naeem A, Pai U. Evaluation of the amount of intact alveolar bone in dentulous mandibular ridges in institution of dental area: A radiographic study. *Int J Dental Sci* 2009; 7(2):1-4.

[45] Yang S, Shen X. Association and relative importance of multiple obesity measures with bone mineral density: The National Health and Nutrition Examination Survey 2005-2006. *Arch Osteoporos* 2015; 10:14. <https://doi.org/10.1007/s11657-015-0219-2>

[46] Ardaçanı E, Marmohamadi SJ. Osteoporosis and oral bone resorption: A review. *J Maxillofac Oral Surg* 2009; 8(2):121-6. <https://doi.org/10.1007/s12663-009-0030-y>

6

[28] Springer B, Slaidina A, Soboleva **70** Lejnieks A. Bone mineral density and mandibular residual ridge resorption. *Int J Sthodont* 2014; 27(3):270-6. <https://doi.org/10.11607/ijp.3283>

[29] Finkelstein JS, Brockwell SE, Mehta V, Greendale GA, Sowers MR, Ettinger B, et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. *J Clin Endocrinol Metab* 2008; 93(3):861-8. <https://doi.org/10.1210/jc.2007-1876>

[30] Ng AC, Melton III LJ, Atkinson EJ, Achenbach SJ, Holets MF, Peterson JM, et al. Relationship of adiposity to bone **54**ometric density and microstructure in men and women across the adult lifespan. *Bone* 2013; 55(1):119-25. <https://doi.org/10.1016/j.bone.2013.02.006>

[31] Nazli R, Akhtar T, Khan MA, Lutfullah G, Haider J, Aslam H. **Prevalence of obesity and associated risk factors in a 1**emale population of rural Peshawar-Pakistan. *Khyber Med Univ J* 2015; 7(1):19-24.

[32] Majumder MI, Harun MASL. Alveolar bone changes in post-menopausal osteopenic and osteoporosis women: An original research. *Int J Dent Med Spec* 2015; 2(2):9-14. <https://doi.org/10.5958/2394-4196.2015.00010.2>

36
%
SIMILARITY INDEX

%
INTERNET SOURCES

36
%
PUBLICATIONS

%
STUDENT PAPERS

PRIMARY SOURCES

1	Susi R. Puspitadewi, Lindawati S. Kusdhany, Sri Lelyati C. Masulili, Pitu Wulandari, Hanna B. Iskandar, Elza I. Auerkari. "The Role of Parathyroid Hormone in Alveolar Bone Resorption on Postmenopausal Women", The Open Dentistry Journal, 2020 Publication	3 %
2	Dimas I. Hutomo, Sri Lelyati C. Masulili, Fatimah M. Tadjoedin, Lindawati S. Kusdhany. "Serum Alkaline Phosphatase and Calcium in Relation to Periodontal Status among Perimenopausal and Postmenopausal Women", The Open Dentistry Journal, 2021 Publication	2 %
3	Meral Tugba Cimsir, Hakan Cimsir, Hasan Basri Savas, Fazli Demirturk. "The correlation between clinical biochemical parameters and bone mineral density in postmenopausal women", Electronic Journal of Medical and Dental Studies, 2023 Publication	1 %

4 "Meeting Abstracts of the 12th World Congress on the Menopause", Climacteric, 2009 1 %
Publication

5 Uzma Akhlaque, Saeed Bin Ayaz, Noreen Akhtar, Nadeem Ahmad. "Association of bone mineral density and body mass index in a cohort of Pakistanis: Relation to gender, menopause and ethnicity", The Egyptian Rheumatologist, 2017 1 %
Publication

6 Ying-Ju Chen, Shun-Ping Wang, Fu-Chou Cheng, Pei-Yu Hsu, Yu-Fen Li, Jay Wu, Heng-Li Huang, Ming-Tzu Tsai, Jui-Ting Hsu. "Intermittent parathyroid hormone improve bone microarchitecture of the mandible and femoral head in ovariectomized rats", BMC Musculoskeletal Disorders, 2017 1 %
Publication

7 Chaerita Maulani, Elza Ibrahim Auerkari, Sri Lelyati C. Masulili, Lindawati S. Kusdhany et al. "Obesitycorrelated to a higher riskofacquiring periodontitis:across-sectional study", F1000Research, 2022 1 %
Publication

8 Ensiyeh Jenabi, Bita Fereidooni, Salman Khazaei, Ronak Hamzehei, Leili Tapak. "The Relationship Between Depression and 1 %

Menopause Symptoms: The PATH Model", Current Women s Health Reviews, 2021

Publication

9

Farzaneh Montazerifar, Mansour Karajibani, Sara Alamian, Mahnaz Sandoughi, Zahra Zakeri, Ali Reza Dashipour. "Age, Weight and Body Mass Index Effect on Bone Mineral Density in Postmenopausal Women", Health Scope, 2014

1 %

Publication

10

Kinga Topolska, Radosław Radzki, Agnieszka Filipiak-Florkiewicz, Marek Bieńko, Adam Florkiewicz, Ewa Cieślik. "Could fructan sources in strawberry matrix be more effective as a tool for improvement of bone structure than these compounds added to diet alone? – Study on osteopenic rat model", Annals of Agricultural and Environmental Medicine, 2019

1 %

Publication

11

Amir Reza Rokn, Akram Labibzadeh, Amir Alireza Rasouli Ghohroudi, Ahmad Reza Shamshiri, Somaye Solhjoo. "Histomorphometric Analysis of Bone Density in Relation to Tactile Sense of the Surgeon During Dental Implant Placement", The Open Dentistry Journal, 2018

1 %

Publication

12 Amy Y. Sato, Munro Peacock, Teresita Bellido. "Glucocorticoid Excess in Bone and Muscle", Clinical Reviews in Bone and Mineral Metabolism, 2018 Publication 1 %

13 Patricia Sheean, Huifang Liang, Linda Schiffer, Claudia Arroyo, Karen Troy, Melinda Stolley. "Assessing the prevalence of compromised bone health among overweight and obese African-American breast cancer survivors: a case-control study", Journal of Cancer Survivorship, 2015 Publication 1 %

14 "IOF World Congress on Osteoporosis", Osteoporosis International, 2004 Publication 1 %

15 Nader Salari, Hooman Ghasemi, Loghman Mohammadi, Mohammad Hasan Behzadi, Elham Rabieenia, Shamarina Shohaimi, Masoud Mohammadi. "The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis", Journal of Orthopaedic Surgery and Research, 2021 Publication 1 %

16 "Advances in Vision Research, Volume III", Springer Science and Business Media LLC, 2021 1 %

17 Dongshan Zhu, Hsin-Fang Chung, Nirmala Pandeya, Annette J. Dobson et al. "Body mass index and age at natural menopause: an international pooled analysis of 11 prospective studies", European Journal of Epidemiology, 2018 1 %
Publication

18 Huan-Cheng Chang, Chuan-Fa Hsieh, Yi-Chin Lin, Disline Manli Tantoh et al. "Does coffee drinking have beneficial effects on bone health of Taiwanese adults? A longitudinal study", BMC Public Health, 2018 1 %
Publication

19 Kyoung Min Kim, Soo Lim, Tae Jung Oh, Jae Hoon Moon, Sung Hee Choi, Jae Young Lim, Ki Woong Kim, Kyong Soo Park, Hak Chul Jang. "Longitudinal changes in muscle mass and strength, and bone mass in older adults: gender-specific associations between muscle and bone losses", The Journals of Gerontology: Series A, 2017 1 %
Publication

20 Malgorzata Monika Brzozowska, Amanda Sainsbury, John A. Eisman, Paul A. Baldock, Jacqueline R. Center. "Bariatric Surgery and Bone Loss: Do We Need to Be Concerned?", 1 %

Clinical Reviews in Bone and Mineral Metabolism, 2014

Publication

21 Reema Tayyem, Haya Abuhileh, Amal Al-Khammash. "Lifestyle and Dietary Patterns as Risk Factors for Osteoporosis: A Literature Review", Current Nutrition & Food Science, 2023 1 %

Publication

22 Tirthal Rai, Rishabh M Hegde, Mayur Rai, Janice Dsa, Srinidhi Rai. "THE IMPACT OF DURATION OF MENOPAUSE ON BONE METABOLISM IN DETECTING AND PREVENTING OSTEOPOROTIC FRACTURES", Research Square Platform LLC, 2021 1 %

Publication

23 Saeid Amirkhanlou, Gholamreza Roshandel, Mehrdad Aghaei, Hossein Mohebi et al. "Assessment of Bone Mineral Density in Patients Undergoing Hemodialysis; An Iranian Population-Based Study", Archives of Iranian Medicine, 2021 1 %

Publication

24 M.-L. Ho. "Simvastatin increases osteoblasts and osteogenic proteins in ovariectomized rats", European Journal of Clinical Investigation, 04/2009 1 %

Publication

25 Ping Fan, Dan Pu, Xiaohong Lv, Nan Hu, Xiuyuan Feng, Zhiming Hao, Yining Sun, Lan He. "Cav 1.3 damages the osteogenic differentiation in osteoporotic rats by negatively regulating Spred 2-mediated autophagy-induced cell senescence", Journal of Cellular and Molecular Medicine, 2020
Publication 1 %

26 Hiroko Hayashi. "Association of CTLA-4 polymorphism with positive anti-GAD antibody in Japanese subjects with type 1 diabetes mellitus", Clinical Endocrinology, 12/1999
Publication 1 %

27 Hanumant Waghmare, Shekhar Chauhan, Santosh Kumar Sharma. "Prevalence and determinants of nutritional status among women and children in Pakistan", BMC Public Health, 2022
Publication 1 %

28 Haojie Yang, Bo Zhang, Jialin Zhu, Dan Liu, Fanglin Guan, Xijing He. "4q22.1 Contributes to Bone Mineral Density and Osteoporosis Susceptibility in Postmenopausal Women of Chinese Han Population", PLoS ONE, 2013
Publication 1 %

29 Cristóbal San Martín-Mohr, Andrés Valladares, Iver Cristi, Francisco José Berral, Claudio
Publication 1 %

Oyarzo, Fernando Lira. "DIFFERENCES IN KNEE SENSORIMOTOR CONTROL BY PHYSICAL ACTIVITY LEVEL AND SEX", *Acta Ortopédica Brasileira*, 2019

Publication

30 Noushin Fahimfar, Sima Noorali, Shakiba Yousefi, Safoora Gharibzadeh et al. "Prevalence of osteoporosis among the elderly population of Iran", *Archives of Osteoporosis*, 2021 1 %

Publication

31 Anna Kopiczko, Jakub Grzegorz Adamczyk, Monika Łopuszańska-Dawid. "Bone Mineral Density in Adolescent Boys: Cross-Sectional Observational Study", *International Journal of Environmental Research and Public Health*, 2020 <1 %

Publication

32 Demir, B.. "Identification of the risk factors for osteoporosis among postmenopausal women", *Maturitas*, 200807/08 <1 %

Publication

33 Vaibhav Gandhi, Arianna Lowney, Lauren Cardarelli, Sumit Yadav, Aditya Tadinada. "Three-dimensional evaluation of the mandibular symphyseal region in block graft harvesting for dental implants using cone- <1 %

beam computed tomography", Imaging
Science in Dentistry, 2020

Publication

34 Jaime J. Morales De Cano, Llorenç Guillamet, Arturo Perez Pons. "ACETABULAR RECONSTRUCTION IN PAPROSKY TYPE III DEFECTS", Acta Ortopédica Brasileira, 2019 <1 %

Publication

35 Ming Ma, Xiaolong Liu, Gengxin Jia, Bin Geng, Yayi Xia. "The association between body fat distribution and bone mineral density: evidence from the US population", BMC Endocrine Disorders, 2022 <1 %

Publication

36 Nur Amalina Binti Abdul Basir, Nor Azlina A. Rahman, Mainul Haque. "Knowledge, Attitude and Practice Regarding Pertussis among a Public University Students in Malaysia", Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 2020 <1 %

Publication

37 &NA;; . "Practice Bulletin No. 129 : Osteoporosis", Obstetrics and Gynecology, 2012. <1 %

Publication

38 Liliana Budiman, Chaidar Masulili, Nina Ariani. "Can Denture Wearing Increase the Nutritional Status in Pre-Elderly and Elderly" <1 %

Patients?", Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 2020

Publication

39 Priyanka Tiwari, Vikas Karambelkar, Patel J. R., Rajesh Sethuraman. "USE OF PANORAMIC RADIOGRAPHS FOR EVALUATION OF MAXILLARY AND MANDIBULAR RESIDUAL RIDGE RESORPTION: IN VITRO STUDY", Journal of Evolution of Medical and Dental Sciences, 2014 <1 %

Publication

40 Ja Young Jeon, Dae Jung Kim, Seung-Hyun Ko, Hyuk-Sang Kwon et al. "Current Status of Glycemic Control of Patients with Diabetes in Korea: The Fifth Korea National Health and Nutrition Examination Survey", Diabetes & Metabolism Journal, 2014 <1 %

Publication

41 Annu Makker, Man Mohan Singh, Geetanjali Mishra, Balendra Pratap Singh, Girish Kumar Jain, Satyawan Jadhav. "Relationship between bone turnover biomarkers, mandibular bone mineral density, and systemic skeletal bone mineral density in premenopausal and postmenopausal Indian women", Menopause, 2012 <1 %

Publication

42 Katarina Almehed. "Prevalence and risk factors of vertebral compression fractures in female SLE patients", *Arthritis Research & Therapy*, 2010 <1 %
Publication

43 S. Ghasemi, H. Sadeghi, Z. Basiri, A. Tahammoli Roudsari. "Relationship of Weight and Body Mass Index with Femur and Lumbar Vertebrae Bone Mineral Density and Content in Premenopausal Women", *Physical Treatments- Specific Physical Therapy*, 2015 <1 %
Publication

44 "Program & Abstracts", *Journal of Bone and Mineral Research*, 09/2002 <1 %
Publication

45 G. Rezende Yanagihara, R. Carminati Shimano, J. Atsuko Tida, J. Suzuki Yamanaka, S. Yasuyo Fukada, J. P. Mardegan Issa, A. C. Shimano, João Manuel R. S. Tavares. "Influence of high-fat diet on bone tissue: An experimental study in growing rats", *The journal of nutrition, health & aging*, 2017 <1 %
Publication

46 "Abstracts of Posters", *Climacteric*, 2011 <1 %
Publication

47 Lijie Xie, Shangqing Zhu, Guanrong Wu, Changting Tang, Yunxiang Guo, Honghua Yu, <1 %

Yijun Hu. "Posterior corneal surface and anterior chamber changes after Small incision lenticule extraction and Femtosecond laser-assisted laser in-situ keratomileusis", **MedComm – Future Medicine**, 2023

Publication

48 D.A. Doherty, E.F. Magann, J. Francis, J.C. Morrison, J.P. Newnham. "Pre-pregnancy body mass index and pregnancy outcomes", **International Journal of Gynecology & Obstetrics**, 2006

Publication

<1 %

49 Dawa Ayu Agus Sri Laksemi, I Gusti Kamasan Arijana, I Made Sudarmaja, Ni Luh Ariwati et al. "Ethanol Extract of Spondias pinnata Leaves Reduce Parasite Number and Increase Macrophage Phagocytosis Capacity of Mice Infected by Plasmodium berghei", **The Indonesian Biomedical Journal**, 2021

Publication

<1 %

50 Rong Chen, Shuying Liu, Meng Huang, Na Ding, Qinyi Wang, Zhongjian Xie, Hong Liu, Zhifeng Sheng, Yangna Ou. "Comparison of the NOF and NOGG guidelines for spinal radiographic examination in postmenopausal Chinese women", **Archives of Osteoporosis**, 2021

Publication

<1 %

51 Anna Kopiczko, Karol Gryko. "Body mass index, general fatness, lipid profile and bone mineral density in young women and men", *Anthropological Review*, 2017 <1 %
Publication

52 Masayo Fujita. "Association of a single nucleotide polymorphism in the secreted frizzled-related protein 4 (sFRP4) gene with bone mineral density", *Geriatrics and Gerontology International*, 9/2004 <1 %
Publication

53 Ogata, N.. "Association of klotho gene polymorphism with bone density and spondylosis of the lumbar spine in postmenopausal women", *Bone*, 200207 <1 %
Publication

54 Xiaoxia Jia, Yixin An, Yuechao Xu, Yuxian Yang, Chang Liu, Dong Zhao, Jing Ke. "Low serum levels of bone turnover markers are associated with perirenal fat thickness in patients with type 2 diabetes mellitus", *Endocrine Connections*, 2021 <1 %
Publication

55 Henyse G. Valente da Silva, Laura M.C. Mendonça, Flávia L. Conceição, Silvia E.V. Zahar, Maria Lucia F. Farias. "Influence of obesity on bone density in postmenopausal <1 %

women", Arquivos Brasileiros de Endocrinologia & Metabologia, 2007

Publication

56 Iwona Rosset, Anna Elżbieta Spinek, Michał Stuss, Ewa Sewerynek, Elżbieta Żądzińska. "Associations between birth season and lumbar spine bone mineral density in perimenopausal Polish women", Anthropological Review, 2023 <1 %

Publication

57 Salimzadeh, Ahmad, Maryam Abolhasani, Moslem Sedaghattalab, and Maryam Moghadasi. "Relationship between bone density and abdominal visceral fat in premenopausal overweight and obese Iranian women aged 30-50 years", International Journal of Rheumatic Diseases, 2014. <1 %

Publication

58 Shinta Nishioka, Tatsuro Inoue, Shinya Onizuka. "Chapter 57-1 Body Mass as a Biomarker and Femoral Fracture", Springer Science and Business Media LLC, 2022 <1 %

Publication

59 Tirthal Rai, Mayur Rai, Janice DSa, Srinidhi Rai, Rishabh Hegde. "Influence of duration of menopause on bone turnover markers in post-menopausal women", Biomedicine, 2022 <1 %

Publication

60 "APSR 2023 Abstract", Respirology, 2023 **<1 %**
Publication

61 Abdalwhab Alzwiri, Hesham Shokry Ismail, Santosh R. Patil. "Accuracy of Cone Beam Computed Tomography in the Assessment of Mandibular Molar Furcation Defects", Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 2020 **<1 %**
Publication

62 Eduardo Madeira, Thiago Thomaz Mafort, Miguel Madeira, Erika Paniago Guedes et al. "Lean mass as a predictor of bone density and microarchitecture in adult obese individuals with metabolic syndrome", Bone, 2014 **<1 %**
Publication

63 Emily A. Rosenberg, Petra Bůžková, Howard A. Fink, John A. Robbins, Molly M. Shores, Alvin M. Matsumoto, Kenneth J. Mukamal. "Testosterone, Dihydrotestosterone, Bone Density, and Hip Fracture Risk among Older Men: The Cardiovascular Health Study", Metabolism, 2020 **<1 %**
Publication

64 H.-M. Noh, Y. S. Park, J. Lee, W. Lee. "A cross-sectional study to examine the correlation between serum TSH levels and the osteoporosis of the lumbar spine in healthy **<1 %**

women with normal thyroid function",

Osteoporosis International, 2014

Publication

65 Laurent Maïmoun, Thibault Mura, Elodie Leprieur, Antoine Avignon, Denis Mariano-Goulart, Ariane Sultan. "Impact of obesity on bone mass throughout adult life: Influence of gender and severity of obesity", Bone, 2016 <1 %

Publication

66 Miho Tsuruta, Toru Takahashi, Miki Tokunaga, Masanori Iwasaki et al. "Relationships between pathologic subjective halitosis, olfactory reference syndrome, and social anxiety in young Japanese women", BMC Psychology, 2017 <1 %

Publication

67 N.A. Prastowo, S. Ali, Ignatio Rika Haryono. "A Population-based Study on Bone Mineral Density Using Dual-Energy X-Ray Absorptiometry (DEXA) in Postmenopausal Women in Jakarta, Indonesia", International Journal of Osteoporosis and Metabolic Disorders, 2018 <1 %

Publication

68 Raphael Dias, Ursula Gramiscelli Hasparyk, Monisi Peres Lopes, João Luiz Vieira Monteiro de Barros et al. "Novel Biomarkers for Lupus <1 %

Nephritis in the "OMICS" Era", Current Medicinal Chemistry, 2021

Publication

69 Samara Verçosa Lessa, Alexandre Marques Paes da Silva, Luiza Andrade dos Santos, Mayra Stambovsky Vieira et al. "Trauma in Primary Teeth at a Specialized Service Center: Retrospective Cohort", Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 2020 <1 %

Publication

70 Alessandra Julie Schuster, Anna Paula da Rosa Possebon, André Ribeiro Schinestsck, Otacílio Luiz Chagas-Júnior et al. "Circumferential bone level and bone remodeling in the posterior mandible of edentulous mandibular overdenture wearers: influence of mandibular bone atrophy in a 3-year cohort study", Clinical Oral Investigations, 2021 <1 %

Publication

71 Angelo Fassio, Luca Idolazzi, Maurizio Rossini, Davide Gatti, Giovanni Adami, Alessandro Giollo, Ombretta Viapiana. "The obesity paradox and osteoporosis", Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity, 2018 <1 %

Publication

72 Dianyin Shi, Tao Zhang, Xiaohua Shi, Haitao Dong. "Long-term bone remodeling after <1 %

definitive decompression for jaw cysts based on a three-dimensional analysis", Journal of Stomatology, Oral and Maxillofacial Surgery, 2023

Publication

73 Fernando C. Ortiz, Cecilia Vergara, Julio Alcayaga. "Micromolar copper modifies electrical properties and spontaneous discharges of nodose ganglion neurons in vitro", BioMetals, 2013 <1 %

Publication

74 Irbath Hamdanie, Agus Prastowo, Indah Rahmawati. "Hubungan Indeks Massa Tubuh dan Massa Lemak dengan Densitas Tulang pada Mahasiswa Fakultas Kedokteran Universitas Jendral Soedirman", JURNAL NUTRISIA, 2017 <1 %

Publication

75 Unentsatsral Lkhagvasuren, Sarantuya Jav, Ochbadrakh Batjargal, Myagmarsuren Batsukh. "Association between osteoporosis and polymorphisms of the bone estrogen receptor 1, calcitonin receptor genes in Mongolian postmenopausal women", PeerJ, 2014 <1 %

Publication

76 "Dental Implant Treatment in Medically Compromised Patients", Springer Science and <1 %

77

Nutrition and Bone Health, 2015.

Publication

<1 %

Exclude quotes Off

Exclude bibliography Off

Exclude matches Off